Model selection for athermal cross-linked fiber networks.

نویسندگان

  • A Shahsavari
  • R C Picu
چکیده

Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption Mechanism for Aniline on the Hypercross-Linked Fiber

A type of novel hypercross-linked fiber adsorbent was obtained by sulfonation and cross-linking reaction of polypropylene fiber grafted styrene-divinylbenzene. The aim of the fiber sulfonation and cross-linking method was to prepare rigid three dimensional networks in the entire fiber and change the ion exchange capacity of fiber. The hypercross-linked fiber adsorbent possesses a principall...

متن کامل

Optimum Pressure Distribution in Design of Cryogenic NGL Recovery Processes

A type of novel hypercross-linked fiber adsorbent was obtained by sulfonation and cross-linking reaction of polypropylene fiber grafted styrene-divinylbenzene. The aim of the fiber sulfonation and cross-linking method was to prepare rigid three dimensional networks in the entire fiber and change the ion exchange capacity of fiber. The hypercross-linked fiber adsorbent possesses a principall...

متن کامل

Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices.

Fiber networks are assemblies of one-dimensional elements representative of materials with fibrous microstructures such as collagen networks and synthetic nonwovens. The mechanics of random fiber networks has been the focus of numerous studies. However, fiber crimp has been explicitly represented only in few cases. In the present work, the mechanics of cross-linked networks with crimped atherma...

متن کامل

Role of architecture in the elastic response of semiflexible polymer and fiber networks.

We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that...

متن کامل

Exceptional stiffening in composite fiber networks.

We study the small strain elastic behavior of composite athermal fiber networks constructed by adding stiffer fibers to a cross-linked base network. We observe that if the base network is in the affine deformation regime, the composite behaves similar to a fiber-reinforced continuum. When the base network is in the nonaffine deformation regime, the stiffness of the composite increases by orders...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012